Relatively prime polynomials and nonsingular Hankel matrices over finite fields

نویسندگان

  • Mario García-Armas
  • Sudhir R. Ghorpade
  • Samrith Ram
چکیده

The probability for two monic polynomials of a positive degree n with coefficients in the finite field Fq to be relatively prime turns out to be identical with the probability for an n × n Hankel matrix over Fq to be nonsingular. Motivated by this, we give an explicit map from pairs of coprime polynomials to nonsingular Hankel matrices that explains this connection. A basic tool used here is the classical notion of Bezoutian of two polynomials. Moreover, we give simpler and direct proofs of the general formulae for the number of m-tuples of relatively prime polynomials over Fq of given degrees and for the number of n× n Hankel matrices over Fq of a given rank.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Number of irreducible polynomials and pairs of relatively prime polynomials in several variables over finite fields

We discuss several enumerative results for irreducible polynomials of a given degree and pairs of relatively prime polynomials of given degrees in several variables over finite fields. Two notions of degree, the total degree and the vector degree, are considered. We show that the number of irreducibles can be computed recursively by degree and that the number of relatively prime pairs can be ex...

متن کامل

Structure of finite wavelet frames over prime fields

‎This article presents a systematic study for structure of finite wavelet frames‎ ‎over prime fields‎. ‎Let $p$ be a positive prime integer and $mathbb{W}_p$‎ ‎be the finite wavelet group over the prime field $mathbb{Z}_p$‎. ‎We study theoretical frame aspects of finite wavelet systems generated by‎ ‎subgroups of the finite wavelet group $mathbb{W}_p$.

متن کامل

The probability of primeness for specially structured polynomial matrices over finite fields with applications to linear systems and convolutional codes

We calculate the probability that random polynomial matrices over a finite field with certain structures are right prime or left prime, respectively. In particular, we give an asymptotic formula for the probability that finitely many nonsingular polynomial matrices are mutually left coprime. These results are used to estimate the number of reachable and observable linear systems as well as the ...

متن کامل

Inversion Components of Block Hankel-like Matrices

The inversion problem for square matrices having the structure of a block Hankel-like matrix is studied. Examples of such matrices in&de Hankel striped, Hankel layered, and vector Hankel matrices. It is shown that the components that both determine nonsingularity and construct the inverse of such matrices are closely related to certain matrix polynomials. These matrix polynomials are multidimen...

متن کامل

Inversion of Mosaic Hankel Matrices via Matrix Polynomial Systems

Heinig and Tewodros [18] give a set of components whose existence provides a necessary and sufficient condition for a mosaic Hankel matrix to be nonsingular. When this is the case they also give a formula for the inverse in terms of these components. By converting these components into a matrix polynomial form we show that the invertibility conditions can be described in terms of matrix rationa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 118  شماره 

صفحات  -

تاریخ انتشار 2011